
the mysteries of binding and 
propagating
by Dave Cottle

Have you ever wondered how a NetInfoä domain gets linked into a domain 
hierarchy? Or how clone servers really work? To find the answers to these 
questions, you need to delve into the inner workings of NetInfo. Take a deep 
breath and get ready to explore the wondrous world of binding and 
propagating. 

a look at the basics
First, a quick look at some basic information about NetInfo domains. For many, 
this will be a refresher. Here are the major points to keep in mind as you 
unravel these mysteries:

· The information in a NetInfo domain is stored in files contained in a 
subdirectory of /etc/netinfo. Each domain has its own directory named 
tag.nidb. All NeXTä computers have a directory for the local domain called
local.nidb. Computers that serve additional domains have additional 
directories. 



· The daemon process netinfod (for NetInfo daemon) serves information 
from a specific domain. When you use ps to examine system processes, 
you see processes of the form netinfod tag, where tag matches the first 
part of the name of a directory under /etc/netinfo. The process netinfod 
local serves information from the database tagged local for the local 
domain. Computers that serve multiple domains run multiple netinfod 
processes. 

· NetInfo domains are organized into a hierarchy, with the root domain ("/") 
at the top level and local domains at the bottom level. Requests for 
information always begin in the local domain and are passed up the 
hierarchy until the information is found or the root domain is reached. 

· Information within a domain is organized into a hierarchy of NetInfo 
directories. The top-level NetInfo directory is also called root ("/"). 

· A clone NetInfo server provides access to a read-only copy of a domain.

Figure 1 shows a three-level hierarchy of NetInfo domains. Each domain is 
identified by name (within each box) and database tag (to the left of each box).
This illustration shows no indication of which computer serves which domain, 



other than the local domains. If you trace the hierarchy from bottom to top, 
you can see that the host everest has access to the information in its local 
domain, the acctng domain, and the root domain ("/"). 

figure 1:    three-level NetInfo domain hierarchy

A48_3-level.tiff ¬

the serves property
The relationship between NetInfo domains in the domain hierarchy is 
determined by the serves property. Host entries are stored in the /machines 
directory of a domain, and it's here you'll find the serves property. The serves 
property identifies the domains served by the associated host. Figure 2 shows 
the partial contents of the domains in a two-level hierarchy made up of three 
computers: etna, olympus, and everest. The master server for the root domain 
is olympus, and everest is a clone server.

As you can see from the illustration, a serves property has values in the form 
domain/tag, which indicates that this host serves the domain domain from a 
database tagged tag. Domains can be designated with a relative name, 
where . means the current domain and .. means the parent domain.



For example, the host entry for olympus in the root domain indicates that it 
serves the domain olympus from a database tagged local, and also serves the 
current domain (.) from a database tagged network. 

Any given domain will have at least one host entry with a serves property for 
the current domain (./tag) and might have entries for the parent domain 
(../tag) or child domains (domain/tag).

binding
Equipped with this information, we can take a look at how the domain 
hierarchy is built at boot time. Here is exactly what happens:

1. As a NeXT computer boots, the daemon process nibindd (NetInfo binding
daemon) is started. The nibindd process searches /etc/netinfo looking for 
subdirectories named tag.nidb. For each directory it finds, nibindd starts a 
netinfod process. 

In the example shown in figure 2, the nibindd daemon on etna finds only 
one subdirectory in /etc/netinfo-local.nidb. As a result, the single process 
netinfod local is started.

figure 2:    the serves property in a two-level domain hierarchy



A49_2-level.tiff ¬

2. As a netinfod process starts up, it searches the /machines directory in its
NetInfo database looking for entries with a serves property that has a 
value in the form ../tag. A serves property with such a value indicates that 
the associated host serves the parent domain (..) from a database tagged 
tag.

On etna, the host entry /machines/broadcasthost in the local domain has a 
serves property with the value ../network. This indicates that broadcasthost
serves the parent domain from a database tagged network.

3. For every host entry found with a serves property value ../tag, a bind 
request is sent to the associated Internet address. The bind request 
includes the tag of the parent domain, the tag of the current domain, and 
the Internet address of the host making the request.

The host etna sends a bind request to the Internet address for 
broadcasthost-255.255.255.255. This address is the special broadcast 
address, which means that the request will be sent to every computer on 
the local network (including etna).



4. The recipients of the bind request pass the message on to their nibindd 
daemon. The nibindd process checks to see if there is a netinfod process 
running that serves NetInfo data from a database that has a tag matching 
the parent domain tag in the bind request. If a match is found, the request 
is passed on to the appropriate netinfod process.

The nibindd process on olympus, as well as the one on everest, finds that 
there is indeed a netinfod process running for a database tagged network. 

5. The receiving netinfod process searches its own /machines NetInfo 
directory looking for entries that include the Internet address of the host 
making the request. The entry is also checked to see if it has a serves 
property with a value in the form domain/tag, where tag matches the tag 
of the domain that sent the bind request. If a host entry is found that 
meets these requirements, a message is sent back to the host that made 
the request, indicating that the receiving domain can serve as the parent 
of the requesting domain.

The netinfod process on olympus finds a host entry for etna with an 
Internet address that matches the one in the bind request. The serves 
property for this host entry has the value etna/local, which matches the tag



in the bind request. All the requirements are met, so olympus sends a 
message to etna indicating that it can serve the parent domain. Because 
everest is serving an exact copy of the domain on olympus, the netinfod 
process finds the same information and also sends a message to etna.

6. The domain that initiated the request binds to the first server that 
responds. From then on, whenever information is needed from theparent 
domain, the request is sent directly to the server that responded first to 
the bind request. The first request is for the Internet addresses of all 
servers of the parent domain. The /machines directory of the parent 
domain is searched again, this time for serves properties with the value 
./tag, where tag is the tag of the parent domain. The host serving the child 
process stores the Internet addresses of all parent domain servers 
(including the one it's bound to) for possible future use.

In this case, etna binds to either olympus or everest, depending on which 
server responds first. Once bound, a search of the parent domain finds that
the host entry for olympus has a serves property with the value ./network, 
as does the host entry for everest. The Internet address of each is returned
to etna.

Here's the whole thing in a nutshell: When the server for a NetInfo domain is 



started, it searches its database for hosts that are potential servers of its 
parent domain. A request is sent to each potential parent server, asking if that 
server can act as the parent. The child domain binds to the first server that 
sends a positive response.

rebinding
As you might have suspected, that isn't the end of the story. Unless there's 
only a single server for the parent domain, a child domain rarely stays bound 
to its parent forever. Sometimes, a parent server gets bogged down with other 
activities and can't respond quickly enough to information requests. A parent 
server might also become unavailable if it's turned off or disconnected from 
the network. If a child sends a request and doesn't get a response within a set 
period of time, it sends out another bind request. This time, the request is sent 
to the Internet addresses that the child stored in the last step of the binding 
process. Again, whichever server responds first becomes the parent domain 
server (this might even be the same server as before, if it's able to respond 
quickly enough). 

An interesting side effect of the binding process is that a new clone server 
won't get used until the client computers are rebooted. Because the Internet 
addresses for all the parent domain servers are determined at boot time, any 
servers for the parent domain added after initial binding won't be recognized. 



One other situation can cause a domain to rebind to its parent: a write request.
As long as the child requests only read access to information, it doesn't matter 
if it's bound to the master server or a clone. However, if it makes a write 
request (such as when a network user changes passwords), it must be bound 
to the master server. Remember, clones serve a read-only copy of the 
database. How does a clone know it's a clone? By examining the master 
property. Each NetInfo domain has a master property in the root directory. The 
value of this property identifies the master server of the domain. Looking at 
figure 2 again, you see that the value of the master property in the root 
domain is olympus/network. This indicates that the master copy of the domain 
is served by the host olympus from the database tagged network.

propagating
At this point you may find yourself wondering, "If a clone server only has read 
access to the database, how does it maintain consistency with the master 
server?" Good question. Whenever a request to the master server results in a 
change to the database, the request is immediately passed on to all clone 
servers, where the change is duplicated. Modifications to a domain are 
therefore propagated almost instantly.

"But," you say, "what if the clone server is unavailable for a time and misses 



some changes?" Another good question. Whenever the daemon process for a 
clone server is started, it compares its copy of the database with the copy on 
the master server (for the curious, it uses checksum). If it finds that its 
database doesn't match the master, it loads a complete copy of the master 
database into its own /netinfo directory. The same comparison is made at least 
every half hour. 

With all write requests being passed to clone servers and periodic consistency 
checks made, you can feel pretty secure that your clone databases will always 
be in sync with the master.

the nitty-gritty
So far, we've been talking about a child domain binding to its parent. Now it's 
time to come clean: That's still not the whole story. When we talk about a child 
domain binding to its parent, we're talking specifically about a netinfod process
binding to its parent. Many other processes and programs on a NeXT computer 
need access to the parent NetInfo domain, and each can bind separately. 

For example, requests for information are handled by the lookupd daemon, 
which searches not only NetInfo but also the DNS and NIS. Because lookupd 
never writes information, it never needs to bind to the master domain server. 
In contrast, when you use PrintManager to export a printer to the network, the 



application must have write access to the appropriate domain. PrintManager 
must bind to the master server and can do so even if netinfod is bound to a 
clone server.

in conclusion
Now you've had a peek inside the mysterious world of NetInfo binding and 
propagating. You've seen how children find their parents, how clones come into
play, and how the different databases are kept consistent. You might feel 
you're gotten too many details, but tuck the data away in the back of your 
mind. Knowledge of the underpinnings of NetInfo can come in handy when 
troubles arise (or when you want to impress your friends).


